Disclaimer: This dissertation has been written by a student and is not an example of our professional work, which you can see examples of here.

Any opinions, findings, conclusions, or recommendations expressed in this dissertation are those of the authors and do not necessarily reflect the views of UKDiss.com.

Library Management System Based On Finger Prints And RFID

Info: 5173 words (21 pages) Dissertation
Published: 12th Dec 2019

Reference this

Tags: EngineeringInformation Systems

Chapter 1: Introduction

Library management system includes areas such as issuing and returning of books, classification of materials, and student’s console using various techniques. The two main features of this system include theft detection of unissued books and automatic system for issuing and returning of books for its members. The theft detection model that we have designed though as yet merely for demonstrational purposes can be extremely beneficial if implemented properly as a professional library system. The efficient use of technology can greatly enhance the library environment and thus prove a technological milestone in the sector. The key component which plays an important role in this syetem is the Radio-frequency identification(RFID) technology. This technology establishes communication by using radio waves in order to exchange the data between a reader and an electronic tag which is attached to an object(a book), for the purpose of identification. The goal of this thesis is to find out whether RFID technology offers any significant benefit for library management and that how does these benefits reflect to the customer satisfaction. RFID technology had its first commercial applications introduced in the late 1980’s. Since then technologies have advanced in different fields causing the cost of RFID tags and readers to go decrease, thus making it easily available to a broader market. For example, as RFID tags have become cheaper, libraries have started adopting this technology, thus ensuring a secure library system. The hardware part in this library management system is comprised of interrogators (also known as RFID readers), RFID tags (also known as labels), the fingerprint module and an alarm.

  1. The interrogators or the RFID readers operating on 125KHz are used to read the tag number of the books when brought near to it in order to process its identification number and check for its status.
  2. The tags are the devices, small in size, less in thickness, attached to the books having a unique identification number each in order to distinguish between the books. These when placed near the reader sends its identification number to it for further processing.
  3. The fingerprint module is used for the student console. The student can login his account for status updates using fingerprint recognition system.
  4. The alarm is used in case if an unissued book is sensed by the RFID reader in the exit zone.

The software part is composed of the database systems and an interfacing tool for database components.

  1. The student’s details are listed in database systems. These are automatically accessed when the student uses the student console feature.
  2. The forms of students are created in the visual studio and this tool is also used to compare the database components with the incoming string in order to update the status of the student.

An RFID reader transfers energy to the RFID tag by emitting electromagnetic waves through the air. The tag uses this RF energy to charge up and then emit or send its code to the RFID reader. The reader receives tag’s response and sends to a host computer or any other external device for further processing. In practical applications of using RFID technology, a tag is attached to a book used to identify the target, when it passes through the area which the reader can read, the RFID tag and its reader builds up the radio signal connections, the tag sends its information to the reader, such as unique code and other data stored on, the reader receives those information and decodes them, and then sends to a host computer so as to complete the whole information processing. The whole management system can be divided into two units namely the main unit and the anti theft unit. There is a wireless connection between these two units. The student can login his account by using the fingerprint recognition system. Then he can place the particular book in the area near the RFID reader in order to issue in or return from his account. When passing through the anti theft unit in the exit zone, an RFID reader placed in this zone will read the code of this book and send wirelessly to the main unit, to the PC. There the status of the book will be checked and again sent back to the anti theft unit. If it sends TRUE, the anti theft will let the book go safe and sound. If it sends FALSE, alarm will ring and thus theft will be detected.

Chapter 2: literature review

2.1 History of RFID

A scientist, Léon Theremin invented an espionage tool for Soviet Union which transmitted radio waves with audio information in 1948. The device was a passive covert listening object, not an identification tag, and it attributed as a predecessor to RFID technology. The RFID technology has been in use from 1921 according to one source (although same source states that the RFID systems have been around since the late 1950s). Mario Cardulisto’s in 1971 was the first inventor of modern RFID; it was a passive radio tag with memory. Initially, it was a passive device, powered by the interrogating signal, and it was demonstrated in 1974 to the New York Port Authority and other potential users. It was consisted of a transponder with 16 bit memory for use as a toll device. The basic Cardullo patent covers the use of RF, sound and light as transmission medium. The original business plan presented to investors in 1969 showed uses in transportation (automotive vehicle identification, automatic toll system, electronic license plate, electronic manifest, vehicle routing, vehicle performance monitoring), banking (electronic check book, electronic credit card), security (personnel identification, automatic gates)

2.2 Background

RFID systems has established in a wide range of markets including tagging, stock identification and automated vehicle identification (AVI) systems because of its ability to track moving objects.


The RFID tags are also known as “transponders”. RFID tags can come in many forms, shapes and different sizes. Some are used which are less than 0.05mm, which were used to study the behaviour of ants. Data is stored in the tag IC which is transmitted through the antenna to an RFID reader. There are two commonly used RFID Transponders: Active (that has an internal power source) and Passive (that do not have an internal power source, but are externally powered from the RFID reader).


A reader (also sometimes called an RFID interrogator) is basically a radio frequency (RF) transciever, which is being controlled by a microprocessor or digital signal processor. The reader antenna captures data from tags then passes the data to a computer or external source for processing. The reader decodes the data encoded in the tag integrated circuit (which is a silicon chip) and then the data is sent to the host computer for further processing.


Information is sent to and received from the RFID tags by a reader using radio waves. In systems which are passive, are the most common, an RFID reader transmits an energy field that“energizes” the tag and induces the power into the tag to respond to the reader. The data collected from tags is then passed through communication interfaces (cable or wireless) to host computer systems in the same manner as data scanned from bar code stickers is captured and passed to a PC for processing, storage, and action.


RFID deployments tend to use unlicensed frequencies for their obvious cost benefits. There are four commonly used frequencies: The commonly used frequencies are: v Low frequency (125/134.2 KHz) v High frequency (13.56 MHz) v Ultra high frequency ( 869 and 915 MHz) v Microwave (2450 MHz) It is important to remember that maximum range is not required in all the applications. Tags in the LF/HF band have a range of 2.25 to 46 cm approximately, while passive UHF tags can reach up to 6.3 meters, and microwave tags can reach 0.5 to 1.9 meters. The range of the tag greatly depends on the surface on which the tag is mounted.


RFID is known by many in the industry to be the leading technology for automatic identification and collection of data. The biggest, as of yet unproven, benefit would ultimately be in the supply chain of goods of the customers where an RFID tag attached to a consumer’s product could be tracked from manufacturing to the retail store right to the consumer’s house.


2.4.1 Electronic Vehicle Registration

In many countries of the world, security of vehicles is a major concern, Government uses the RFID system for Vehicle Registration. With implementing RFID systems, we can detect stolen cars and it is helpful in their retrieval also.

2.4.2 Payment by mobile phones

Two credit card companies are working with Dallals since 2009, Texas-based Device Fidelity to develop specialized micro cards. When these cards are inserted into the mobile phones, the mobile phone directly connects with the bank account and we can use it as credit card.

2.4.3 Transportation payments

For traffic management, government use RFID applications. Automotive companies also use various RFID tracking solutions for product management.

2.4.4 Product tracking

RFID is also used in product tracking application, begins with plant-based production processes, and then extends into post sales configuration management for large buyers.

2.4.5Animal identification

One of the oldest uses of RFID technology is animal tagging. Originally meant for large ranches and rough terrain, since mad-cow disease, RFID has become crucial in animal identification management.

2.4.6 Museums

RFID technologies are implemented for the user also in museums. An example was the custom-designed temporary research application, “eXspot,” at the Exploratorium, a science museum in San Francisco, California.

2.4.7 Race timings

RFID can also be used in racing. Till 1990 it is used in animal racing. First time it is implemented in pigeons racing. It is used for registering race start and end timings for animals or individuals in large running races or multi-sport races where it is impossible to get accurate stopwatch readings for every entrant. 2.5 Problems and concerns

2.5.1 Data flooding

Each tag generating a message each time when passing a reader may be a desired outcome. However, event filtering is required to reduce this data inflow to a meaningful depiction of moving goods passing a threshold. Various concepts have been designed, mainly offered as middleware performing the filtering from noisy and redundant raw data to significant processed data.

2.5.2 Global standardization

Frequencies are using for RFID in the USA currently incompatible with those of Europe or Japan. Furthermore, no standard has yet become as universal as the barcode. To address international trade concerns, it is necessary to utilize a tag that is operational within all of the international frequency domains.

2.5.3 Security concerns

A primary RFID security concern is the illicit tracking of RFID tags. Tags, which are world-readable, pose a risk to both personal location privacy and corporate/military security. Such concerns have been raised with respect to the United States Department of Defense’s recent adoption of RFID tags for supply chain management. More generally, privacy organizations have expressed concerns in the context of ongoing efforts to embed electronic product code (EPC) RFID tags in consumer products.

2.5.4 Temperature exposure

Currently, RFID tags are glued with an integrated circuit (IC) to an inlay. Vibration and high temperatures can break the connection. If the IC connection break with the inlay, the RFID tag will not transmit


Fingerprint authentication refers to automated method of verifying a match between two fingerprints. Fingerprint is one of the many forms of the biometrics used to identify an individual as well as verify their identity. Each individual has a unique pattern in his fingerprints. There are some unique points in known as minutia points in the fingerprints of the individuals. The number of these points, their location, distance from each other, vary from person to person. Every individual has these characteristics different.

2.6.1 Why fingerprint?

In the IT world the end-users use fingerprint authentication due to some reasons, i.e. security, and there is the reason that is why they establish, but it is very expensive to maintain. Other authentication mechanisms like smart cards, tokens, etc. require you to carry something. This is far better than a password, also easies to lose. Losing your credit card or driving license is worse. Information is valuable and harder to track than money. Fingerprints also acts as a simple, trusted and convenient user interface to a well thought security plan. A user authenticated via fingerprints can take advantage of a solid security system minimal education.

Chapter 3: Requirements Specification

3.1 Non-functional Requirements






Delivery: The system development process and deliverable documents shall conform to the process and deliverables defined in the document “CIIT-CE-02H Degree Project Student’s Handbook”.



Standard: The standard of the final product shall be of undergraduate level or above.

3.2 External requirements






Security: This is a degree project having no strict security requirements.



Ethical: The application will not use any type of un-ethical electronic material while project development and execution.



Legislative: The application shall not use any private or confidential data, or network information that may infringe copyrights and/or confidentiality of any personnel not directly involved in this product.



Safety: the application is safe and not harmful in any case.

3.3 Functional Requirements

3.3.1 Category 1

Following requirements should be met under given priorities:



















3.3.2 Category 2

























3.3.3 Category 3
















Chapter 4: Project Design

4.1 Architecture Overview

The design of the intended product is explained graphically with the help of a block diagram shown in figure below. The diagram explains the overall interactions of the modules and their placements.

4.2 Required Components

  • Microcontroller PIC18F452
  • RF transceiver nRF905
  • Fingerprint module SM630
  • RFID reader module ID20
  • RS232 Driver IC MAX232


4.3.1 Description

PIC18F452 is the member of PIC18F family. It is a low power, high performance flash 8-bit microcontroller with 32 Kbytes of Flash programmable and erasable read only memory (EEPROM). This device is compatible with the industry standard PIC18Fxxx instruction set and pin outs. The on-chip Flash allows the program memory to be quickly reprogrammed using a non-volatile memory programmer and in circuit serial programmer (ICSP). The 18F452 is a powerful microcomputer which provides a highly flexible and cost effective solution to many embedded control applications. The 8951 provides the following features.
4.3.2 Pin layout

4.3.3 Features and specifications

Program memory type flash v Program memory 32 KB v CPU speed 10 MIPS v Data EEPROM 256 bytes v RAM 1536 bytes v Digital communication peripherals 1-A/E/USART, 1-MSSP(SPI/I2C) v Ports A, B, C, D & E v I/O pins 32 This microcontroller is more suitable for our project as it has more memory and instruction speed, as required by our system, than 16Fxxx family or ATMEL. The protocols used for digital communication are sort of built-in in this microcontroller. Moreover it is more reliable and efficient than others.

4.4 RF transceiver nRF905

4.4.1 Description

The nRF905 is a radio transceiver for the 433/ 868/ 915 MHz ISM band on a single chip. This transceiver consists of fully integrated frequency synthesizer, receiver chain with demodulator, a modulator, a crystal oscillator and a power amplifier. Current consumption is very low, it transmits only 9mA at an output power of -10dBm, and in receive mode 12.5mA. Built-in power down modes makes power saving easily realizable. Its pin configuration is as follows:





























4.4.2 Features

Data rate 50 kbps v Operating frequency 433 MHz ISM band v Modulation technique GFSK v SPI interface v Power supply range 1.9 to 3.6 V v Channels 11 with v
Channel switching time <650μs Figure 3 This transceiver was used because it has high data rate, long distance and low voltage consumption. Also it has some addition features like address matching, carrier detection alert and high noise immunity.

4.5 Fingerprint Module SM630

SM630 integrated fingerprint identification module is the release of Miaxis Biometrics Company. It consists of optical fingerprint sensor, a high performance DSP processor and a Flash. It boasts of functions such as fingerprint enrolment, fingerprint verification, fingerprint deletion, fingerprint download, fingerprint upload, etc. It has four pins connections:


Power supply +


Module TX


Module RX



4.5.1 Features

High Adaptation to Fingerprints v Easy to Use and Expand v Low Power Consumption v Integrated Design v Operating Voltage: 4.3V6V v Fingerprint Template: 768 templates v User Flash Memory: 64KByte v Interface Protocol: Standard serial interface TTL level v Communication Baud Rate: 57600bps
Figure 4 It was used as it is easy to interface with the microcontroller and reduces image processing coding. It gives out serial TTL output which is easy to process. It can be easily controlled by the commands to get the desired output. Adding, deleting, searching and matching commands are easy to implement in this module.

4.6 RFID reader module ID20

This RFID reader module is very simple to use. It has a built in antenna, the only holdup is the 2mm pin spacing (breakout board available below). Power the module, hold up a card, and get a serial string output containing the unique ID of the card. It uses weigand26 protocol.

4.6.1 Pin description

Its pin description is as follows:






To external antenna and tuning capacitor


To external antenna


Card present




Format Selector (+/-)


Data 1


Data 0


3.1 KHz logic


DC Voltage Supply

4.6.2 Features

5V supply v 125kHz read frequency v EM4001 64-bit RFID tag compatible v 9600bps TTL and RS232 output v Magnetic stripe emulation output v Read range of 16+ cm

4.7 RS232 Driver IC MAX232

4.7.1 Description

MAX232 is an integrated circuit. It converts signals from an RS-232 serial port to signals suitable for use in TTL compatible digital logic circuits. It is a dual driver or receiver and it converts the RX, TX, CTS and RTS signals typically. This provide at output ±7.5 from 5v supply via on-chip charge pumps and external capacitors. This makes it useful for implementing RS-232 in devices that otherwise do not need any voltages outside the 0V to +5V range, as power supply design does not need to be made more complicated just for driving the RS-232 in this case.



+ connector for capacitor C1



output of voltage pump



– connector for capacitor C1



+ connector for capacitor C2



– connector for capacitor C2



output of voltage pump / inverter



Driver 2 output



Receiver 2 input



Receiver 2 output



Driver 2 input



Driver 1 input



Receiver 1 output



Receiver 1 input



Driver 1 output






Power supply

The receivers reduce RS-232 inputs (which may be as high as ±25V), to standard 5V TTL levels. These receivers have a typical threshold of 1.3V, and a typical hysteresis of 0.5V.

Chapter 5: Implementation

5.1 Designing the RFID reader module

We started our project with designing the RFID reader/writer module. The standard we followed was ISO15693 used in library for theft detection of unissued books. The standard frequency used in it was 13.56 MHz. The PCB layout was designed. The IC used in this reader was TRF7960. Its dimension was 4.85×4.85 mm. The PCB design of the reader was not accurate and of high quality as required. Later on, we came to know that SMD components were required when working with high frequency. Then SMD components were used to design the reader. Its PCB is shown in the figure below:

5.1.1 Problems in the design of the reader

The main obstacle we faced in the designing of this RFID reader was that its PCB design required tinning process as the IC consisted of 32 SMD pins, each separated 0.5 mm apart. The size of the TRF7960 IC was very small thus requiring a very accurate PCB. This would require 2-3 months and the time we had was short for this. Thus we switched to ID20 RFID module. This was quiet simple to use and easily available in the market.

5.1.2 Antenna design of TRX7960

The loop antenna used in the previous reader was designed and printed on PCB. Its parameters were found using the formulas and equations of loop antenna. Its parameters were as follows: v Frequency = 13.56 MHz v Impedance = 50 Ohms v Antenna size = 0.027wavelength v Wavelength = 22.123894 m v Quality Factor = 6.75 v Track spacing=0.0508 cm v Track width= 0.127cm v L = 1.2608 µH

This loop antenna is required to match with the 50 Ohm and has to be tuned to radiate with a high Q value. Therefore a matching and resonator circuit is used which is composed of a series capacitor, parallel capacitor and a parallel resistor. The capacitances are used to match the inductive load as well as to build a resonator. The resistor is used to decrease the Q-value of the resonant circuit for a better design of antenna.

5.2 Implementation with the RFID module ID20

Due to the obstacles faced in implementing the design of the reader, the RFID reader module was used which gives out serial output. It has a built-in antenna as well as reasonable range. It is placed in the main unit and directly interfaced with the microcontroller. The fingerprint module SM630 and the RF transceiver nRF905 are also connected with the microcontroller. The former has the serial TTL serial input/output while the later has SPI interface. The RS232 is used to connect the main unit with the PC. The database application is installed in the PC which has a record of the student details. For the detection of unissued books, an anti-theft unit is designed in which the RF transceiver is connected with the microcontroller. The RFID reader module is also connected in this unit.

5.3 Working of the system

5.3.1 Main unit

There are 5 external buttons attached with the main circuit board. Four of them execute fingerprint module commands and two for the RFID reader. The fingerprint command buttons include Add button for adding new fingerprint, Delete button for deleting the fingerprint, Delete all button for deleting all fingerprint database and a Match button for matching the fingerprint. The function of the one button of the RFID reader is to issue and return the book from the student’s account. The main unit is operating on 3.3V and 5V. The RF transceiver and the microcontroller are operating on 3.3V. The MAX232, fingerprint module and RFID reader are operating on 5V. The LF33CV regulator IC is used to maintain 3.3V. For 5V, LM7805 is used in the power supply circuit board. Pin number 1 is pulled up by using 1Kohm resistor and also pulled down using 0.1uF capacitor. Pin number 11 and 32 are connected to VCC and pin number 12 and 31 to the ground. The crystal oscillator IC of frequency 20MHz is connected with the pin number 13 of the microcontroller. It generates clock pulses for executing the microcontroller instructions. Thus 5MHz is the operating frequency of the microcontroller. The external buttons for executing fingerprint and RFID functions are connected to port D, with pins from 19, 20, 21, 22 and 27. These buttons are pulled down by using 10kohm SIP. SIP is an integrated circuit consisting of resistors on a single chip having one point common. This common point decides the functionality of the SIP. If this point is connected with the VCC, it acts as pull up and vice versa.

5.3.2 Antitheft Unit

This unit consists of a microcontroller (PIC18F452), RFID reader (ID-20), RF Transceiver (nRF 905) and some other same components. If any book will pass through this unit RFID will read its ID and send to microcontroller. The microcontroller will send this id to main unit

Cite This Work

To export a reference to this article please select a referencing stye below:

Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.

Related Services

View all

DMCA / Removal Request

If you are the original writer of this dissertation and no longer wish to have your work published on the UKDiss.com website then please: